MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  somincom Structured version   Visualization version   GIF version

Theorem somincom 5530
Description: Commutativity of minimum in a total order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
somincom ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴))

Proof of Theorem somincom
StepHypRef Expression
1 so2nr 5059 . . . . 5 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → ¬ (𝐴𝑅𝐵𝐵𝑅𝐴))
2 nan 604 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → ¬ (𝐴𝑅𝐵𝐵𝑅𝐴)) ↔ (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → ¬ 𝐵𝑅𝐴))
31, 2mpbi 220 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → ¬ 𝐵𝑅𝐴)
43iffalsed 4097 . . 3 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → if(𝐵𝑅𝐴, 𝐵, 𝐴) = 𝐴)
54eqcomd 2628 . 2 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → 𝐴 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
6 sotric 5061 . . . . 5 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝑅𝐴)))
76con2bid 344 . . . 4 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴 = 𝐵𝐵𝑅𝐴) ↔ ¬ 𝐴𝑅𝐵))
8 ifeq2 4091 . . . . . 6 (𝐴 = 𝐵 → if(𝐵𝑅𝐴, 𝐵, 𝐴) = if(𝐵𝑅𝐴, 𝐵, 𝐵))
9 ifid 4125 . . . . . 6 if(𝐵𝑅𝐴, 𝐵, 𝐵) = 𝐵
108, 9syl6req 2673 . . . . 5 (𝐴 = 𝐵𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
11 iftrue 4092 . . . . . 6 (𝐵𝑅𝐴 → if(𝐵𝑅𝐴, 𝐵, 𝐴) = 𝐵)
1211eqcomd 2628 . . . . 5 (𝐵𝑅𝐴𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
1310, 12jaoi 394 . . . 4 ((𝐴 = 𝐵𝐵𝑅𝐴) → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
147, 13syl6bir 244 . . 3 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (¬ 𝐴𝑅𝐵𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴)))
1514imp 445 . 2 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
165, 15ifeqda 4121 1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  ifcif 4086   class class class wbr 4653   Or wor 5034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-po 5035  df-so 5036
This theorem is referenced by:  somin2  5531
  Copyright terms: Public domain W3C validator