![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcegf | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.) |
Ref | Expression |
---|---|
spcgf.1 | ⊢ Ⅎ𝑥𝐴 |
spcgf.2 | ⊢ Ⅎ𝑥𝜓 |
spcgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcegf | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcgf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | spcgf.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | nfn 1784 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
4 | spcgf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | notbid 308 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
6 | 1, 3, 5 | spcgf 3288 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ¬ 𝜑 → ¬ 𝜓)) |
7 | 6 | con2d 129 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ¬ ∀𝑥 ¬ 𝜑)) |
8 | df-ex 1705 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
9 | 7, 8 | syl6ibr 242 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∀wal 1481 = wceq 1483 ∃wex 1704 Ⅎwnf 1708 ∈ wcel 1990 Ⅎwnfc 2751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 |
This theorem is referenced by: spcegv 3294 rspce 3304 euotd 4975 bnj607 30986 bnj1491 31125 rspcegf 39182 stoweidlem36 40253 stoweidlem46 40263 |
Copyright terms: Public domain | W3C validator |