Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1491 Structured version   Visualization version   GIF version

Theorem bnj1491 31125
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1491.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1491.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1491.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1491.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1491.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1491.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1491.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1491.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1491.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1491.10 𝑃 = 𝐻
bnj1491.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1491.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1491.13 (𝜒 → (𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
Assertion
Ref Expression
bnj1491 ((𝜒𝑄 ∈ V) → ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐺   𝑅,𝑓   𝑥,𝑓
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑓,𝑑)   𝐴(𝑥,𝑦,𝑑)   𝐵(𝑥,𝑦,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑓,𝑑)   𝑅(𝑥,𝑦,𝑑)   𝐺(𝑥,𝑦,𝑑)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1491
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1491.13 . 2 (𝜒 → (𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
2 bnj1491.1 . . . . 5 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
3 bnj1491.2 . . . . 5 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
4 bnj1491.3 . . . . 5 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
5 bnj1491.4 . . . . 5 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
6 bnj1491.5 . . . . 5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
7 bnj1491.6 . . . . 5 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
8 bnj1491.7 . . . . 5 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
9 bnj1491.8 . . . . 5 (𝜏′[𝑦 / 𝑥]𝜏)
10 bnj1491.9 . . . . 5 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
11 bnj1491.10 . . . . 5 𝑃 = 𝐻
12 bnj1491.11 . . . . 5 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
13 bnj1491.12 . . . . 5 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
142, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13bnj1466 31121 . . . 4 (𝑤𝑄 → ∀𝑓 𝑤𝑄)
1514nfcii 2755 . . 3 𝑓𝑄
164bnj1317 30892 . . . . . 6 (𝑤𝐶 → ∀𝑓 𝑤𝐶)
1716nfcii 2755 . . . . 5 𝑓𝐶
1815, 17nfel 2777 . . . 4 𝑓 𝑄𝐶
1915nfdm 5367 . . . . 5 𝑓dom 𝑄
2019nfeq1 2778 . . . 4 𝑓dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
2118, 20nfan 1828 . . 3 𝑓(𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
22 eleq1 2689 . . . 4 (𝑓 = 𝑄 → (𝑓𝐶𝑄𝐶))
23 dmeq 5324 . . . . 5 (𝑓 = 𝑄 → dom 𝑓 = dom 𝑄)
2423eqeq1d 2624 . . . 4 (𝑓 = 𝑄 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
2522, 24anbi12d 747 . . 3 (𝑓 = 𝑄 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))))
2615, 21, 25spcegf 3289 . 2 (𝑄 ∈ V → ((𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) → ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))))
271, 26mpan9 486 1 ((𝜒𝑄 ∈ V) → ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  [wsbc 3435  cun 3572  wss 3574  c0 3915  {csn 4177  cop 4183   cuni 4436   class class class wbr 4653  dom cdm 5114  cres 5116   Fn wfn 5883  cfv 5888   predc-bnj14 30754   FrSe w-bnj15 30758   trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-dm 5124  df-res 5126  df-iota 5851  df-fv 5896
This theorem is referenced by:  bnj1312  31126
  Copyright terms: Public domain W3C validator