| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spesbc | Structured version Visualization version GIF version | ||
| Description: Existence form of spsbc 3448. (Contributed by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| spesbc | ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3445 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
| 2 | rspesbca 3520 | . . 3 ⊢ ((𝐴 ∈ V ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ V 𝜑) | |
| 3 | 1, 2 | mpancom 703 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥 ∈ V 𝜑) |
| 4 | rexv 3220 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | |
| 5 | 3, 4 | sylib 208 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1704 ∈ wcel 1990 ∃wrex 2913 Vcvv 3200 [wsbc 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: spesbcd 3522 opelopabsb 4985 sbccomieg 37357 frege124d 38053 sbiota1 38635 |
| Copyright terms: Public domain | W3C validator |