| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spfwOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of spfw 1965 as of 10-Oct-2021. (Contributed by NM, 19-Apr-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spfw.1 | ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) |
| spfw.2 | ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) |
| spfw.3 | ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) |
| spfw.4 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spfwOLD | ⊢ (∀𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spfw.2 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | alim 1738 | . . 3 ⊢ (∀𝑦(∀𝑥𝜑 → 𝜓) → (∀𝑦∀𝑥𝜑 → ∀𝑦𝜓)) | |
| 3 | spfw.3 | . . . 4 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
| 4 | spfw.4 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | biimprd 238 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
| 6 | 5 | equcoms 1947 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) |
| 7 | 3, 6 | spimw 1926 | . . 3 ⊢ (∀𝑦𝜓 → 𝜑) |
| 8 | 1, 2, 7 | syl56 36 | . 2 ⊢ (∀𝑦(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜑)) |
| 9 | spfw.1 | . . 3 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
| 10 | 4 | biimpd 219 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 11 | 9, 10 | spimw 1926 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
| 12 | 8, 11 | mpg 1724 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |