| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spimw | Structured version Visualization version GIF version | ||
| Description: Specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 7-Aug-2017.) |
| Ref | Expression |
|---|---|
| spimw.1 | ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) |
| spimw.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| spimw | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6v 1889 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
| 2 | spimw.1 | . . 3 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
| 3 | spimw.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 4 | 2, 3 | spimfw 1878 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝑥 = 𝑦 → (∀𝑥𝜑 → 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-6 1888 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: spimvw 1927 spnfw 1928 cbvaliw 1933 spfw 1965 spfwOLD 1966 |
| Copyright terms: Public domain | W3C validator |