| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spimed | Structured version Visualization version GIF version | ||
| Description: Deduction version of spime 2256. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| spimed.1 | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| spimed.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| spimed | ⊢ (𝜒 → (𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spimed.1 | . . 3 ⊢ (𝜒 → Ⅎ𝑥𝜑) | |
| 2 | 1 | nf5rd 2066 | . 2 ⊢ (𝜒 → (𝜑 → ∀𝑥𝜑)) |
| 3 | ax6e 2250 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 4 | spimed.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | eximii 1764 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) |
| 6 | 5 | 19.35i 1806 | . 2 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
| 7 | 2, 6 | syl6 35 | 1 ⊢ (𝜒 → (𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 ∃wex 1704 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: spime 2256 2ax6elem 2449 |
| Copyright terms: Public domain | W3C validator |