Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprid Structured version   Visualization version   GIF version

Theorem sprid 41724
Description: Two identical representations of the class of all unordered pairs. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprid {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}

Proof of Theorem sprid
StepHypRef Expression
1 rexv 3220 . . 3 (∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑏 ∈ V 𝑝 = {𝑎, 𝑏})
2 rexv 3220 . . . 4 (∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑏 𝑝 = {𝑎, 𝑏})
32exbii 1774 . . 3 (∃𝑎𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
41, 3bitri 264 . 2 (∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
54abbii 2739 1 {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wex 1704  {cab 2608  wrex 2913  Vcvv 3200  {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-rex 2918  df-v 3202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator