Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprid Structured version   Visualization version   Unicode version

Theorem sprid 41724
Description: Two identical representations of the class of all unordered pairs. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprid  |-  { p  |  E. a  e.  _V  E. b  e.  _V  p  =  { a ,  b } }  =  {
p  |  E. a E. b  p  =  { a ,  b } }

Proof of Theorem sprid
StepHypRef Expression
1 rexv 3220 . . 3  |-  ( E. a  e.  _V  E. b  e.  _V  p  =  { a ,  b }  <->  E. a E. b  e.  _V  p  =  {
a ,  b } )
2 rexv 3220 . . . 4  |-  ( E. b  e.  _V  p  =  { a ,  b }  <->  E. b  p  =  { a ,  b } )
32exbii 1774 . . 3  |-  ( E. a E. b  e. 
_V  p  =  {
a ,  b }  <->  E. a E. b  p  =  { a ,  b } )
41, 3bitri 264 . 2  |-  ( E. a  e.  _V  E. b  e.  _V  p  =  { a ,  b }  <->  E. a E. b  p  =  { a ,  b } )
54abbii 2739 1  |-  { p  |  E. a  e.  _V  E. b  e.  _V  p  =  { a ,  b } }  =  {
p  |  E. a E. b  p  =  { a ,  b } }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   E.wex 1704   {cab 2608   E.wrex 2913   _Vcvv 3200   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-rex 2918  df-v 3202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator