Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdf2 Structured version   Visualization version   GIF version

Theorem ssdf2 39331
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
ssdf2.p 𝑥𝜑
ssdf2.a 𝑥𝐴
ssdf2.b 𝑥𝐵
ssdf2.x ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
ssdf2 (𝜑𝐴𝐵)

Proof of Theorem ssdf2
StepHypRef Expression
1 ssdf2.p . 2 𝑥𝜑
2 ssdf2.a . 2 𝑥𝐴
3 ssdf2.b . 2 𝑥𝐵
4 ssdf2.x . . 3 ((𝜑𝑥𝐴) → 𝑥𝐵)
54ex 450 . 2 (𝜑 → (𝑥𝐴𝑥𝐵))
61, 2, 3, 5ssrd 3608 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wnf 1708  wcel 1990  wnfc 2751  wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-in 3581  df-ss 3588
This theorem is referenced by:  supminfxr2  39699
  Copyright terms: Public domain W3C validator