![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssdf2 | Structured version Visualization version GIF version |
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
ssdf2.p | ⊢ Ⅎ𝑥𝜑 |
ssdf2.a | ⊢ Ⅎ𝑥𝐴 |
ssdf2.b | ⊢ Ⅎ𝑥𝐵 |
ssdf2.x | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
ssdf2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdf2.p | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ssdf2.a | . 2 ⊢ Ⅎ𝑥𝐴 | |
3 | ssdf2.b | . 2 ⊢ Ⅎ𝑥𝐵 | |
4 | ssdf2.x | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
5 | 4 | ex 450 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
6 | 1, 2, 3, 5 | ssrd 3608 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 Ⅎwnf 1708 ∈ wcel 1990 Ⅎwnfc 2751 ⊆ wss 3574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-in 3581 df-ss 3588 |
This theorem is referenced by: supminfxr2 39699 |
Copyright terms: Public domain | W3C validator |