| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrd | Structured version Visualization version GIF version | ||
| Description: Deduction rule based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
| Ref | Expression |
|---|---|
| ssrd.0 | ⊢ Ⅎ𝑥𝜑 |
| ssrd.1 | ⊢ Ⅎ𝑥𝐴 |
| ssrd.2 | ⊢ Ⅎ𝑥𝐵 |
| ssrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| ssrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ssrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | alrimi 2082 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | ssrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | ssrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 4, 5 | dfss2f 3594 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 7 | 3, 6 | sylibr 224 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 Ⅎwnf 1708 ∈ wcel 1990 Ⅎwnfc 2751 ⊆ wss 3574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-in 3581 df-ss 3588 |
| This theorem is referenced by: eqrdOLD 3623 neiptopnei 20936 rabss3d 29351 topdifinffinlem 33195 relowlssretop 33211 ssdf2 39331 ssfiunibd 39523 stoweidlem52 40269 stoweidlem59 40276 |
| Copyright terms: Public domain | W3C validator |