| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssin0 | Structured version Visualization version GIF version | ||
| Description: If two classes are disjoint, two respective subclasses are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| ssin0 | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2in 3840 | . . . 4 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) ⊆ (𝐴 ∩ 𝐵)) | |
| 2 | 1 | 3adant1 1079 | . . 3 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) ⊆ (𝐴 ∩ 𝐵)) |
| 3 | eqimss 3657 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ 𝐵) ⊆ ∅) | |
| 4 | 3 | 3ad2ant1 1082 | . . 3 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐴 ∩ 𝐵) ⊆ ∅) |
| 5 | 2, 4 | sstrd 3613 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) ⊆ ∅) |
| 6 | ss0 3974 | . 2 ⊢ ((𝐶 ∩ 𝐷) ⊆ ∅ → (𝐶 ∩ 𝐷) = ∅) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 |
| This theorem is referenced by: sge0resplit 40623 |
| Copyright terms: Public domain | W3C validator |