| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssiun3 | Structured version Visualization version GIF version | ||
| Description: Subset equivalence for an indexed union. (Contributed by Thierry Arnoux, 17-Oct-2016.) |
| Ref | Expression |
|---|---|
| ssiun3 | ⊢ (∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3591 | . 2 ⊢ (𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) | |
| 2 | df-ral 2917 | . 2 ⊢ (∀𝑦 ∈ 𝐶 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) | |
| 3 | eliun 4524 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 4 | 3 | ralbii 2980 | . 2 ⊢ (∀𝑦 ∈ 𝐶 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| 5 | 1, 2, 4 | 3bitr2ri 289 | 1 ⊢ (∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 ∪ ciun 4520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-iun 4522 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |