MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssmin Structured version   Visualization version   GIF version

Theorem ssmin 4496
Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.)
Assertion
Ref Expression
ssmin 𝐴 {𝑥 ∣ (𝐴𝑥𝜑)}
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssmin
StepHypRef Expression
1 ssintab 4494 . 2 (𝐴 {𝑥 ∣ (𝐴𝑥𝜑)} ↔ ∀𝑥((𝐴𝑥𝜑) → 𝐴𝑥))
2 simpl 473 . 2 ((𝐴𝑥𝜑) → 𝐴𝑥)
31, 2mpgbir 1726 1 𝐴 {𝑥 ∣ (𝐴𝑥𝜑)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  {cab 2608  wss 3574   cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581  df-ss 3588  df-int 4476
This theorem is referenced by:  tcid  8615  trclfvlb  13749  trclun  13755  dmtrcl  37934  rntrcl  37935  dfrtrcl5  37936
  Copyright terms: Public domain W3C validator