MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssintab Structured version   Visualization version   GIF version

Theorem ssintab 4494
Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
ssintab (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssintab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 4493 . 2 (𝐴 {𝑥𝜑} ↔ ∀𝑦 ∈ {𝑥𝜑}𝐴𝑦)
2 sseq2 3627 . . 3 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
32ralab2 3371 . 2 (∀𝑦 ∈ {𝑥𝜑}𝐴𝑦 ↔ ∀𝑥(𝜑𝐴𝑥))
41, 3bitri 264 1 (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  {cab 2608  wral 2912  wss 3574   cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581  df-ss 3588  df-int 4476
This theorem is referenced by:  ssmin  4496  ssintrab  4500  intmin4  4506  dffi2  8329  rankval3b  8689  sstskm  9664  dfuzi  11468  cycsubg  17622  ssmclslem  31462  mptrcllem  37920  dfrcl2  37966  brtrclfv2  38019
  Copyright terms: Public domain W3C validator