MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssoprab2i Structured version   Visualization version   GIF version

Theorem ssoprab2i 6749
Description: Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
ssoprab2i.1 (𝜑𝜓)
Assertion
Ref Expression
ssoprab2i {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem ssoprab2i
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssoprab2i.1 . . . . 5 (𝜑𝜓)
21anim2i 593 . . . 4 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
322eximi 1763 . . 3 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
43ssopab2i 5003 . 2 {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
5 dfoprab2 6701 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
6 dfoprab2 6701 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
74, 5, 63sstr4i 3644 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wss 3574  cop 4183  {copab 4712  {coprab 6651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-oprab 6654
This theorem is referenced by:  sxbrsigalem5  30350
  Copyright terms: Public domain W3C validator