| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sssymdifcl | Structured version Visualization version GIF version | ||
| Description: The class of all subsets of a class is closed under symmetric difference. (Contributed by Richard Penner, 3-Jan-2020.) |
| Ref | Expression |
|---|---|
| ssficl.a | ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} |
| Ref | Expression |
|---|---|
| sssymdifcl | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssficl.a | . 2 ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} | |
| 2 | vex 3203 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | difexg 4808 | . . . 4 ⊢ (𝑥 ∈ V → (𝑥 ∖ 𝑦) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝑥 ∖ 𝑦) ∈ V |
| 5 | vex 3203 | . . . 4 ⊢ 𝑦 ∈ V | |
| 6 | difexg 4808 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∖ 𝑥) ∈ V) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (𝑦 ∖ 𝑥) ∈ V |
| 8 | 4, 7 | unex 6956 | . 2 ⊢ ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ∈ V |
| 9 | sseq1 3626 | . 2 ⊢ (𝑧 = ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) → (𝑧 ⊆ 𝐵 ↔ ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ⊆ 𝐵)) | |
| 10 | sseq1 3626 | . 2 ⊢ (𝑧 = 𝑥 → (𝑧 ⊆ 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
| 11 | sseq1 3626 | . 2 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵)) | |
| 12 | ssdifss 3741 | . . 3 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ∖ 𝑦) ⊆ 𝐵) | |
| 13 | ssdifss 3741 | . . 3 ⊢ (𝑦 ⊆ 𝐵 → (𝑦 ∖ 𝑥) ⊆ 𝐵) | |
| 14 | unss 3787 | . . . 4 ⊢ (((𝑥 ∖ 𝑦) ⊆ 𝐵 ∧ (𝑦 ∖ 𝑥) ⊆ 𝐵) ↔ ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ⊆ 𝐵) | |
| 15 | 14 | biimpi 206 | . . 3 ⊢ (((𝑥 ∖ 𝑦) ⊆ 𝐵 ∧ (𝑦 ∖ 𝑥) ⊆ 𝐵) → ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ⊆ 𝐵) |
| 16 | 12, 13, 15 | syl2an 494 | . 2 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) → ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ⊆ 𝐵) |
| 17 | 1, 8, 9, 10, 11, 16 | cllem0 37871 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 ∀wral 2912 Vcvv 3200 ∖ cdif 3571 ∪ cun 3572 ⊆ wss 3574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-uni 4437 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |