Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssymdifcl Structured version   Visualization version   GIF version

Theorem sssymdifcl 37877
Description: The class of all subsets of a class is closed under symmetric difference. (Contributed by Richard Penner, 3-Jan-2020.)
Hypothesis
Ref Expression
ssficl.a 𝐴 = {𝑧𝑧𝐵}
Assertion
Ref Expression
sssymdifcl 𝑥𝐴𝑦𝐴 ((𝑥𝑦) ∪ (𝑦𝑥)) ∈ 𝐴
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴   𝑧,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem sssymdifcl
StepHypRef Expression
1 ssficl.a . 2 𝐴 = {𝑧𝑧𝐵}
2 vex 3203 . . . 4 𝑥 ∈ V
3 difexg 4808 . . . 4 (𝑥 ∈ V → (𝑥𝑦) ∈ V)
42, 3ax-mp 5 . . 3 (𝑥𝑦) ∈ V
5 vex 3203 . . . 4 𝑦 ∈ V
6 difexg 4808 . . . 4 (𝑦 ∈ V → (𝑦𝑥) ∈ V)
75, 6ax-mp 5 . . 3 (𝑦𝑥) ∈ V
84, 7unex 6956 . 2 ((𝑥𝑦) ∪ (𝑦𝑥)) ∈ V
9 sseq1 3626 . 2 (𝑧 = ((𝑥𝑦) ∪ (𝑦𝑥)) → (𝑧𝐵 ↔ ((𝑥𝑦) ∪ (𝑦𝑥)) ⊆ 𝐵))
10 sseq1 3626 . 2 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
11 sseq1 3626 . 2 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
12 ssdifss 3741 . . 3 (𝑥𝐵 → (𝑥𝑦) ⊆ 𝐵)
13 ssdifss 3741 . . 3 (𝑦𝐵 → (𝑦𝑥) ⊆ 𝐵)
14 unss 3787 . . . 4 (((𝑥𝑦) ⊆ 𝐵 ∧ (𝑦𝑥) ⊆ 𝐵) ↔ ((𝑥𝑦) ∪ (𝑦𝑥)) ⊆ 𝐵)
1514biimpi 206 . . 3 (((𝑥𝑦) ⊆ 𝐵 ∧ (𝑦𝑥) ⊆ 𝐵) → ((𝑥𝑦) ∪ (𝑦𝑥)) ⊆ 𝐵)
1612, 13, 15syl2an 494 . 2 ((𝑥𝐵𝑦𝐵) → ((𝑥𝑦) ∪ (𝑦𝑥)) ⊆ 𝐵)
171, 8, 9, 10, 11, 16cllem0 37871 1 𝑥𝐴𝑦𝐴 ((𝑥𝑦) ∪ (𝑦𝑥)) ∈ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  Vcvv 3200  cdif 3571  cun 3572  wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator