Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssymdifcl Structured version   Visualization version   Unicode version

Theorem sssymdifcl 37877
Description: The class of all subsets of a class is closed under symmetric difference. (Contributed by Richard Penner, 3-Jan-2020.)
Hypothesis
Ref Expression
ssficl.a  |-  A  =  { z  |  z 
C_  B }
Assertion
Ref Expression
sssymdifcl  |-  A. x  e.  A  A. y  e.  A  ( (
x  \  y )  u.  ( y  \  x
) )  e.  A
Distinct variable groups:    x, y,
z    y, A    z, B
Allowed substitution hints:    A( x, z)    B( x, y)

Proof of Theorem sssymdifcl
StepHypRef Expression
1 ssficl.a . 2  |-  A  =  { z  |  z 
C_  B }
2 vex 3203 . . . 4  |-  x  e. 
_V
3 difexg 4808 . . . 4  |-  ( x  e.  _V  ->  (
x  \  y )  e.  _V )
42, 3ax-mp 5 . . 3  |-  ( x 
\  y )  e. 
_V
5 vex 3203 . . . 4  |-  y  e. 
_V
6 difexg 4808 . . . 4  |-  ( y  e.  _V  ->  (
y  \  x )  e.  _V )
75, 6ax-mp 5 . . 3  |-  ( y 
\  x )  e. 
_V
84, 7unex 6956 . 2  |-  ( ( x  \  y )  u.  ( y  \  x ) )  e. 
_V
9 sseq1 3626 . 2  |-  ( z  =  ( ( x 
\  y )  u.  ( y  \  x
) )  ->  (
z  C_  B  <->  ( (
x  \  y )  u.  ( y  \  x
) )  C_  B
) )
10 sseq1 3626 . 2  |-  ( z  =  x  ->  (
z  C_  B  <->  x  C_  B
) )
11 sseq1 3626 . 2  |-  ( z  =  y  ->  (
z  C_  B  <->  y  C_  B ) )
12 ssdifss 3741 . . 3  |-  ( x 
C_  B  ->  (
x  \  y )  C_  B )
13 ssdifss 3741 . . 3  |-  ( y 
C_  B  ->  (
y  \  x )  C_  B )
14 unss 3787 . . . 4  |-  ( ( ( x  \  y
)  C_  B  /\  ( y  \  x
)  C_  B )  <->  ( ( x  \  y
)  u.  ( y 
\  x ) ) 
C_  B )
1514biimpi 206 . . 3  |-  ( ( ( x  \  y
)  C_  B  /\  ( y  \  x
)  C_  B )  ->  ( ( x  \ 
y )  u.  (
y  \  x )
)  C_  B )
1612, 13, 15syl2an 494 . 2  |-  ( ( x  C_  B  /\  y  C_  B )  -> 
( ( x  \ 
y )  u.  (
y  \  x )
)  C_  B )
171, 8, 9, 10, 11, 16cllem0 37871 1  |-  A. x  e.  A  A. y  e.  A  ( (
x  \  y )  u.  ( y  \  x
) )  e.  A
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator