![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sstrALT2VD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of sstrALT2 39070. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sstrALT2VD | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3591 | . . 3 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
2 | idn1 38790 | . . . . . . 7 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) ▶ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) ) | |
3 | simpr 477 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | e1a 38852 | . . . . . 6 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) ▶ 𝐵 ⊆ 𝐶 ) |
5 | simpl 473 | . . . . . . . 8 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐵) | |
6 | 2, 5 | e1a 38852 | . . . . . . 7 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) ▶ 𝐴 ⊆ 𝐵 ) |
7 | idn2 38838 | . . . . . . 7 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) , 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 ) | |
8 | ssel2 3598 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
9 | 6, 7, 8 | e12an 38952 | . . . . . 6 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) , 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐵 ) |
10 | ssel2 3598 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶) | |
11 | 4, 9, 10 | e12an 38952 | . . . . 5 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) , 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐶 ) |
12 | 11 | in2 38830 | . . . 4 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) ▶ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ) |
13 | 12 | gen11 38841 | . . 3 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) ▶ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ) |
14 | biimpr 210 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) → (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → 𝐴 ⊆ 𝐶)) | |
15 | 1, 13, 14 | e01 38916 | . 2 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) ▶ 𝐴 ⊆ 𝐶 ) |
16 | 15 | in1 38787 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 ∈ wcel 1990 ⊆ wss 3574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-in 3581 df-ss 3588 df-vd1 38786 df-vd2 38794 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |