Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstrALT2VD Structured version   Visualization version   GIF version

Theorem sstrALT2VD 39069
Description: Virtual deduction proof of sstrALT2 39070. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sstrALT2VD ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sstrALT2VD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3591 . . 3 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
2 idn1 38790 . . . . . . 7 (   (𝐴𝐵𝐵𝐶)   ▶   (𝐴𝐵𝐵𝐶)   )
3 simpr 477 . . . . . . 7 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
42, 3e1a 38852 . . . . . 6 (   (𝐴𝐵𝐵𝐶)   ▶   𝐵𝐶   )
5 simpl 473 . . . . . . . 8 ((𝐴𝐵𝐵𝐶) → 𝐴𝐵)
62, 5e1a 38852 . . . . . . 7 (   (𝐴𝐵𝐵𝐶)   ▶   𝐴𝐵   )
7 idn2 38838 . . . . . . 7 (   (𝐴𝐵𝐵𝐶)   ,   𝑥𝐴   ▶   𝑥𝐴   )
8 ssel2 3598 . . . . . . 7 ((𝐴𝐵𝑥𝐴) → 𝑥𝐵)
96, 7, 8e12an 38952 . . . . . 6 (   (𝐴𝐵𝐵𝐶)   ,   𝑥𝐴   ▶   𝑥𝐵   )
10 ssel2 3598 . . . . . 6 ((𝐵𝐶𝑥𝐵) → 𝑥𝐶)
114, 9, 10e12an 38952 . . . . 5 (   (𝐴𝐵𝐵𝐶)   ,   𝑥𝐴   ▶   𝑥𝐶   )
1211in2 38830 . . . 4 (   (𝐴𝐵𝐵𝐶)   ▶   (𝑥𝐴𝑥𝐶)   )
1312gen11 38841 . . 3 (   (𝐴𝐵𝐵𝐶)   ▶   𝑥(𝑥𝐴𝑥𝐶)   )
14 biimpr 210 . . 3 ((𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶)) → (∀𝑥(𝑥𝐴𝑥𝐶) → 𝐴𝐶))
151, 13, 14e01 38916 . 2 (   (𝐴𝐵𝐵𝐶)   ▶   𝐴𝐶   )
1615in1 38787 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481  wcel 1990  wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-in 3581  df-ss 3588  df-vd1 38786  df-vd2 38794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator