Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstrALT2VD Structured version   Visualization version   Unicode version

Theorem sstrALT2VD 39069
Description: Virtual deduction proof of sstrALT2 39070. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sstrALT2VD  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )

Proof of Theorem sstrALT2VD
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfss2 3591 . . 3  |-  ( A 
C_  C  <->  A. x
( x  e.  A  ->  x  e.  C ) )
2 idn1 38790 . . . . . . 7  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  ( A  C_  B  /\  B  C_  C ) ).
3 simpr 477 . . . . . . 7  |-  ( ( A  C_  B  /\  B  C_  C )  ->  B  C_  C )
42, 3e1a 38852 . . . . . 6  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  B  C_  C ).
5 simpl 473 . . . . . . . 8  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  B )
62, 5e1a 38852 . . . . . . 7  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  A  C_  B ).
7 idn2 38838 . . . . . . 7  |-  (. ( A  C_  B  /\  B  C_  C ) ,. x  e.  A  ->.  x  e.  A ).
8 ssel2 3598 . . . . . . 7  |-  ( ( A  C_  B  /\  x  e.  A )  ->  x  e.  B )
96, 7, 8e12an 38952 . . . . . 6  |-  (. ( A  C_  B  /\  B  C_  C ) ,. x  e.  A  ->.  x  e.  B ).
10 ssel2 3598 . . . . . 6  |-  ( ( B  C_  C  /\  x  e.  B )  ->  x  e.  C )
114, 9, 10e12an 38952 . . . . 5  |-  (. ( A  C_  B  /\  B  C_  C ) ,. x  e.  A  ->.  x  e.  C ).
1211in2 38830 . . . 4  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  ( x  e.  A  ->  x  e.  C ) ).
1312gen11 38841 . . 3  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  A. x
( x  e.  A  ->  x  e.  C ) ).
14 biimpr 210 . . 3  |-  ( ( A  C_  C  <->  A. x
( x  e.  A  ->  x  e.  C ) )  ->  ( A. x ( x  e.  A  ->  x  e.  C )  ->  A  C_  C ) )
151, 13, 14e01 38916 . 2  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  A  C_  C ).
1615in1 38787 1  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-in 3581  df-ss 3588  df-vd1 38786  df-vd2 38794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator