MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssuni Structured version   Visualization version   GIF version

Theorem ssuni 4459
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
ssuni ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)

Proof of Theorem ssuni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elunii 4441 . . . . . 6 ((𝑦𝐵𝐵𝐶) → 𝑦 𝐶)
21expcom 451 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦 𝐶))
32imim2d 57 . . . 4 (𝐵𝐶 → ((𝑦𝐴𝑦𝐵) → (𝑦𝐴𝑦 𝐶)))
43alimdv 1845 . . 3 (𝐵𝐶 → (∀𝑦(𝑦𝐴𝑦𝐵) → ∀𝑦(𝑦𝐴𝑦 𝐶)))
5 dfss2 3591 . . 3 (𝐴𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
6 dfss2 3591 . . 3 (𝐴 𝐶 ↔ ∀𝑦(𝑦𝐴𝑦 𝐶))
74, 5, 63imtr4g 285 . 2 (𝐵𝐶 → (𝐴𝐵𝐴 𝐶))
87impcom 446 1 ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481  wcel 1990  wss 3574   cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-uni 4437
This theorem is referenced by:  elssuni  4467  uniss2  4470  ssorduni  6985  filssufilg  21715  alexsubALTlem2  21852  utoptop  22038  locfinreflem  29907  setrec1  42438
  Copyright terms: Public domain W3C validator