MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filssufilg Structured version   Visualization version   GIF version

Theorem filssufilg 21715
Description: A filter is contained in some ultrafilter. This version of filssufil 21716 contains the choice as a hypothesis (in the assumption that 𝒫 𝒫 𝑋 is well-orderable). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filssufilg ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem filssufilg
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → 𝒫 𝒫 𝑋 ∈ dom card)
2 rabss 3679 . . . . 5 ({𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋 ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝑔 ∈ 𝒫 𝒫 𝑋))
3 filsspw 21655 . . . . . . 7 (𝑔 ∈ (Fil‘𝑋) → 𝑔 ⊆ 𝒫 𝑋)
4 selpw 4165 . . . . . . 7 (𝑔 ∈ 𝒫 𝒫 𝑋𝑔 ⊆ 𝒫 𝑋)
53, 4sylibr 224 . . . . . 6 (𝑔 ∈ (Fil‘𝑋) → 𝑔 ∈ 𝒫 𝒫 𝑋)
65a1d 25 . . . . 5 (𝑔 ∈ (Fil‘𝑋) → (𝐹𝑔𝑔 ∈ 𝒫 𝒫 𝑋))
72, 6mprgbir 2927 . . . 4 {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋
8 ssnum 8862 . . . 4 ((𝒫 𝒫 𝑋 ∈ dom card ∧ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card)
91, 7, 8sylancl 694 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card)
10 ssid 3624 . . . . . . 7 𝐹𝐹
1110jctr 565 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐹))
12 sseq2 3627 . . . . . . 7 (𝑔 = 𝐹 → (𝐹𝑔𝐹𝐹))
1312elrab 3363 . . . . . 6 (𝐹 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐹))
1411, 13sylibr 224 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
15 ne0i 3921 . . . . 5 (𝐹 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅)
1614, 15syl 17 . . . 4 (𝐹 ∈ (Fil‘𝑋) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅)
1716adantr 481 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅)
18 simpr1 1067 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
19 ssrab 3680 . . . . . . . . . 10 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝑥 ⊆ (Fil‘𝑋) ∧ ∀𝑔𝑥 𝐹𝑔))
2018, 19sylib 208 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → (𝑥 ⊆ (Fil‘𝑋) ∧ ∀𝑔𝑥 𝐹𝑔))
2120simpld 475 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ⊆ (Fil‘𝑋))
22 simpr2 1068 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ≠ ∅)
23 simpr3 1069 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → [] Or 𝑥)
24 sorpssun 6944 . . . . . . . . . 10 (( [] Or 𝑥 ∧ (𝑔𝑥𝑥)) → (𝑔) ∈ 𝑥)
2524ralrimivva 2971 . . . . . . . . 9 ( [] Or 𝑥 → ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥)
2623, 25syl 17 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥)
27 filuni 21689 . . . . . . . 8 ((𝑥 ⊆ (Fil‘𝑋) ∧ 𝑥 ≠ ∅ ∧ ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥) → 𝑥 ∈ (Fil‘𝑋))
2821, 22, 26, 27syl3anc 1326 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ∈ (Fil‘𝑋))
29 n0 3931 . . . . . . . . 9 (𝑥 ≠ ∅ ↔ ∃ 𝑥)
30 ssel2 3598 . . . . . . . . . . . . . 14 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
31 sseq2 3627 . . . . . . . . . . . . . . 15 (𝑔 = → (𝐹𝑔𝐹))
3231elrab 3363 . . . . . . . . . . . . . 14 ( ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ ( ∈ (Fil‘𝑋) ∧ 𝐹))
3330, 32sylib 208 . . . . . . . . . . . . 13 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → ( ∈ (Fil‘𝑋) ∧ 𝐹))
3433simprd 479 . . . . . . . . . . . 12 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → 𝐹)
35 ssuni 4459 . . . . . . . . . . . 12 ((𝐹𝑥) → 𝐹 𝑥)
3634, 35sylancom 701 . . . . . . . . . . 11 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → 𝐹 𝑥)
3736ex 450 . . . . . . . . . 10 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (𝑥𝐹 𝑥))
3837exlimdv 1861 . . . . . . . . 9 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (∃ 𝑥𝐹 𝑥))
3929, 38syl5bi 232 . . . . . . . 8 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (𝑥 ≠ ∅ → 𝐹 𝑥))
4018, 22, 39sylc 65 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝐹 𝑥)
41 sseq2 3627 . . . . . . . 8 (𝑔 = 𝑥 → (𝐹𝑔𝐹 𝑥))
4241elrab 3363 . . . . . . 7 ( 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ ( 𝑥 ∈ (Fil‘𝑋) ∧ 𝐹 𝑥))
4328, 40, 42sylanbrc 698 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
4443ex 450 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
4544alrimiv 1855 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
4645adantr 481 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
47 zornn0g 9327 . . 3 (({𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card ∧ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅ ∧ ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})) → ∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓)
489, 17, 46, 47syl3anc 1326 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓)
49 sseq2 3627 . . . . 5 (𝑔 = 𝑓 → (𝐹𝑔𝐹𝑓))
5049elrab 3363 . . . 4 (𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓))
5131ralrab 3368 . . . 4 (∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓 ↔ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓))
52 simpll 790 . . . . . 6 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝑓 ∈ (Fil‘𝑋))
53 sstr2 3610 . . . . . . . . . . 11 (𝐹𝑓 → (𝑓𝐹))
5453imim1d 82 . . . . . . . . . 10 (𝐹𝑓 → ((𝐹 → ¬ 𝑓) → (𝑓 → ¬ 𝑓)))
55 df-pss 3590 . . . . . . . . . . . . 13 (𝑓 ↔ (𝑓𝑓))
5655simplbi2 655 . . . . . . . . . . . 12 (𝑓 → (𝑓𝑓))
5756necon1bd 2812 . . . . . . . . . . 11 (𝑓 → (¬ 𝑓𝑓 = ))
5857a2i 14 . . . . . . . . . 10 ((𝑓 → ¬ 𝑓) → (𝑓𝑓 = ))
5954, 58syl6 35 . . . . . . . . 9 (𝐹𝑓 → ((𝐹 → ¬ 𝑓) → (𝑓𝑓 = )))
6059ralimdv 2963 . . . . . . . 8 (𝐹𝑓 → (∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = )))
6160imp 445 . . . . . . 7 ((𝐹𝑓 ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = ))
6261adantll 750 . . . . . 6 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = ))
63 isufil2 21712 . . . . . 6 (𝑓 ∈ (UFil‘𝑋) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = )))
6452, 62, 63sylanbrc 698 . . . . 5 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝑓 ∈ (UFil‘𝑋))
65 simplr 792 . . . . 5 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝐹𝑓)
6664, 65jca 554 . . . 4 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → (𝑓 ∈ (UFil‘𝑋) ∧ 𝐹𝑓))
6750, 51, 66syl2anb 496 . . 3 ((𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ ∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓) → (𝑓 ∈ (UFil‘𝑋) ∧ 𝐹𝑓))
6867reximi2 3010 . 2 (∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
6948, 68syl 17 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037  wal 1481  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  cun 3572  wss 3574  wpss 3575  c0 3915  𝒫 cpw 4158   cuni 4436   Or wor 5034  dom cdm 5114  cfv 5888   [] crpss 6936  cardccrd 8761  Filcfil 21649  UFilcufil 21703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rpss 6937  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-card 8765  df-cda 8990  df-fbas 19743  df-fg 19744  df-fil 21650  df-ufil 21705
This theorem is referenced by:  filssufil  21716  numufl  21719
  Copyright terms: Public domain W3C validator