| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucprcreg | Structured version Visualization version GIF version | ||
| Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Regularity). (Contributed by NM, 9-Jul-2004.) (Proof shortened by BJ, 16-Apr-2019.) |
| Ref | Expression |
|---|---|
| sucprcreg | ⊢ (¬ 𝐴 ∈ V ↔ suc 𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucprc 5800 | . 2 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
| 2 | elirr 8505 | . . . 4 ⊢ ¬ 𝐴 ∈ 𝐴 | |
| 3 | df-suc 5729 | . . . . . . . 8 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 4 | 3 | eqeq1i 2627 | . . . . . . 7 ⊢ (suc 𝐴 = 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴) |
| 5 | ssequn2 3786 | . . . . . . 7 ⊢ ({𝐴} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴) | |
| 6 | 4, 5 | bitr4i 267 | . . . . . 6 ⊢ (suc 𝐴 = 𝐴 ↔ {𝐴} ⊆ 𝐴) |
| 7 | 6 | biimpi 206 | . . . . 5 ⊢ (suc 𝐴 = 𝐴 → {𝐴} ⊆ 𝐴) |
| 8 | snidg 4206 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴}) | |
| 9 | ssel2 3598 | . . . . 5 ⊢ (({𝐴} ⊆ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝐴 ∈ 𝐴) | |
| 10 | 7, 8, 9 | syl2an 494 | . . . 4 ⊢ ((suc 𝐴 = 𝐴 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝐴) |
| 11 | 2, 10 | mto 188 | . . 3 ⊢ ¬ (suc 𝐴 = 𝐴 ∧ 𝐴 ∈ V) |
| 12 | 11 | imnani 439 | . 2 ⊢ (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ V) |
| 13 | 1, 12 | impbii 199 | 1 ⊢ (¬ 𝐴 ∈ V ↔ suc 𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 ⊆ wss 3574 {csn 4177 suc csuc 5725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-suc 5729 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |