MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucprcreg Structured version   Visualization version   GIF version

Theorem sucprcreg 8506
Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Regularity). (Contributed by NM, 9-Jul-2004.) (Proof shortened by BJ, 16-Apr-2019.)
Assertion
Ref Expression
sucprcreg 𝐴 ∈ V ↔ suc 𝐴 = 𝐴)

Proof of Theorem sucprcreg
StepHypRef Expression
1 sucprc 5800 . 2 𝐴 ∈ V → suc 𝐴 = 𝐴)
2 elirr 8505 . . . 4 ¬ 𝐴𝐴
3 df-suc 5729 . . . . . . . 8 suc 𝐴 = (𝐴 ∪ {𝐴})
43eqeq1i 2627 . . . . . . 7 (suc 𝐴 = 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴)
5 ssequn2 3786 . . . . . . 7 ({𝐴} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴)
64, 5bitr4i 267 . . . . . 6 (suc 𝐴 = 𝐴 ↔ {𝐴} ⊆ 𝐴)
76biimpi 206 . . . . 5 (suc 𝐴 = 𝐴 → {𝐴} ⊆ 𝐴)
8 snidg 4206 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ {𝐴})
9 ssel2 3598 . . . . 5 (({𝐴} ⊆ 𝐴𝐴 ∈ {𝐴}) → 𝐴𝐴)
107, 8, 9syl2an 494 . . . 4 ((suc 𝐴 = 𝐴𝐴 ∈ V) → 𝐴𝐴)
112, 10mto 188 . . 3 ¬ (suc 𝐴 = 𝐴𝐴 ∈ V)
1211imnani 439 . 2 (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ V)
131, 12impbii 199 1 𝐴 ∈ V ↔ suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  wss 3574  {csn 4177  suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-suc 5729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator