MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucprcreg Structured version   Visualization version   Unicode version

Theorem sucprcreg 8506
Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Regularity). (Contributed by NM, 9-Jul-2004.) (Proof shortened by BJ, 16-Apr-2019.)
Assertion
Ref Expression
sucprcreg  |-  ( -.  A  e.  _V  <->  suc  A  =  A )

Proof of Theorem sucprcreg
StepHypRef Expression
1 sucprc 5800 . 2  |-  ( -.  A  e.  _V  ->  suc 
A  =  A )
2 elirr 8505 . . . 4  |-  -.  A  e.  A
3 df-suc 5729 . . . . . . . 8  |-  suc  A  =  ( A  u.  { A } )
43eqeq1i 2627 . . . . . . 7  |-  ( suc 
A  =  A  <->  ( A  u.  { A } )  =  A )
5 ssequn2 3786 . . . . . . 7  |-  ( { A }  C_  A  <->  ( A  u.  { A } )  =  A )
64, 5bitr4i 267 . . . . . 6  |-  ( suc 
A  =  A  <->  { A }  C_  A )
76biimpi 206 . . . . 5  |-  ( suc 
A  =  A  ->  { A }  C_  A
)
8 snidg 4206 . . . . 5  |-  ( A  e.  _V  ->  A  e.  { A } )
9 ssel2 3598 . . . . 5  |-  ( ( { A }  C_  A  /\  A  e.  { A } )  ->  A  e.  A )
107, 8, 9syl2an 494 . . . 4  |-  ( ( suc  A  =  A  /\  A  e.  _V )  ->  A  e.  A
)
112, 10mto 188 . . 3  |-  -.  ( suc  A  =  A  /\  A  e.  _V )
1211imnani 439 . 2  |-  ( suc 
A  =  A  ->  -.  A  e.  _V )
131, 12impbii 199 1  |-  ( -.  A  e.  _V  <->  suc  A  =  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574   {csn 4177   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-suc 5729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator