Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supssd Structured version   Visualization version   GIF version

Theorem supssd 29487
Description: Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
supssd.0 (𝜑𝑅 Or 𝐴)
supssd.1 (𝜑𝐵𝐶)
supssd.2 (𝜑𝐶𝐴)
supssd.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
supssd.4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
Assertion
Ref Expression
supssd (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem supssd
StepHypRef Expression
1 supssd.0 . . 3 (𝜑𝑅 Or 𝐴)
2 supssd.4 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
31, 2supcl 8364 . 2 (𝜑 → sup(𝐶, 𝐴, 𝑅) ∈ 𝐴)
4 supssd.1 . . . . 5 (𝜑𝐵𝐶)
54sseld 3602 . . . 4 (𝜑 → (𝑧𝐵𝑧𝐶))
61, 2supub 8365 . . . 4 (𝜑 → (𝑧𝐶 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧))
75, 6syld 47 . . 3 (𝜑 → (𝑧𝐵 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧))
87ralrimiv 2965 . 2 (𝜑 → ∀𝑧𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧)
9 supssd.3 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
101, 9supnub 8368 . 2 (𝜑 → ((sup(𝐶, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑧𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧) → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)))
113, 8, 10mp2and 715 1 (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653   Or wor 5034  supcsup 8346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-po 5035  df-so 5036  df-iota 5851  df-riota 6611  df-sup 8348
This theorem is referenced by:  xrsupssd  29524
  Copyright terms: Public domain W3C validator