| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > supssd | Structured version Visualization version GIF version | ||
| Description: Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
| Ref | Expression |
|---|---|
| supssd.0 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| supssd.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| supssd.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| supssd.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| supssd.4 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) |
| Ref | Expression |
|---|---|
| supssd | ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supssd.0 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 2 | supssd.4 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) | |
| 3 | 1, 2 | supcl 8364 | . 2 ⊢ (𝜑 → sup(𝐶, 𝐴, 𝑅) ∈ 𝐴) |
| 4 | supssd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 5 | 4 | sseld 3602 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐶)) |
| 6 | 1, 2 | supub 8365 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐶 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧)) |
| 7 | 5, 6 | syld 47 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐵 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧)) |
| 8 | 7 | ralrimiv 2965 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧) |
| 9 | supssd.3 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
| 10 | 1, 9 | supnub 8368 | . 2 ⊢ (𝜑 → ((sup(𝐶, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧) → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅))) |
| 11 | 3, 8, 10 | mp2and 715 | 1 ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 class class class wbr 4653 Or wor 5034 supcsup 8346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-po 5035 df-so 5036 df-iota 5851 df-riota 6611 df-sup 8348 |
| This theorem is referenced by: xrsupssd 29524 |
| Copyright terms: Public domain | W3C validator |