| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supcl | Structured version Visualization version GIF version | ||
| Description: A supremum belongs to its base class (closure law). See also supub 8365 and suplub 8366. (Contributed by NM, 12-Oct-2004.) |
| Ref | Expression |
|---|---|
| supmo.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| supcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| Ref | Expression |
|---|---|
| supcl | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmo.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 2 | 1 | supval2 8361 | . 2 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) |
| 3 | supcl.2 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
| 4 | 1, 3 | supeu 8360 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| 5 | riotacl 6625 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ 𝐴) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ 𝐴) |
| 7 | 2, 6 | eqeltrd 2701 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ∃!wreu 2914 class class class wbr 4653 Or wor 5034 ℩crio 6610 supcsup 8346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-po 5035 df-so 5036 df-iota 5851 df-riota 6611 df-sup 8348 |
| This theorem is referenced by: suplub2 8367 supiso 8381 infcl 8394 inflb 8395 infglb 8396 infglbb 8397 suprcl 10983 supxrcl 12145 dgrcl 23989 supssd 29487 xrsupssd 29524 esum2d 30155 oddpwdc 30416 wzelOLD 31772 supclt 33533 |
| Copyright terms: Public domain | W3C validator |