| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl5d | Structured version Visualization version GIF version | ||
| Description: A nested syllogism deduction. Deduction associated with syl5 34. (Contributed by NM, 14-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| syl5d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl5d.2 | ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl5d | ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜒))) |
| 3 | syl5d.2 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) | |
| 4 | 2, 3 | syldd 72 | 1 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl7 74 syl9 77 imim12d 81 sbi1 2392 mopick 2535 isofrlem 6590 kmlem9 8980 squeeze0 10926 lcmfunsnlem1 15350 fgss2 21678 ordcmp 32446 linepsubN 35038 pmapsub 35054 bgoldbnnsum3prm 41692 |
| Copyright terms: Public domain | W3C validator |