| Step | Hyp | Ref
| Expression |
| 1 | | isofrlem.1 |
. . . . . . 7
⊢ (𝜑 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
| 2 | | isof1o 6573 |
. . . . . . 7
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| 3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐻:𝐴–1-1-onto→𝐵) |
| 4 | | f1ofn 6138 |
. . . . . . . 8
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Fn 𝐴) |
| 5 | | n0 3931 |
. . . . . . . . . 10
⊢ (𝑥 ≠ ∅ ↔
∃𝑦 𝑦 ∈ 𝑥) |
| 6 | | fnfvima 6496 |
. . . . . . . . . . . . 13
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝐻‘𝑦) ∈ (𝐻 “ 𝑥)) |
| 7 | | ne0i 3921 |
. . . . . . . . . . . . 13
⊢ ((𝐻‘𝑦) ∈ (𝐻 “ 𝑥) → (𝐻 “ 𝑥) ≠ ∅) |
| 8 | 6, 7 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝐻 “ 𝑥) ≠ ∅) |
| 9 | 8 | 3expia 1267 |
. . . . . . . . . . 11
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴) → (𝑦 ∈ 𝑥 → (𝐻 “ 𝑥) ≠ ∅)) |
| 10 | 9 | exlimdv 1861 |
. . . . . . . . . 10
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴) → (∃𝑦 𝑦 ∈ 𝑥 → (𝐻 “ 𝑥) ≠ ∅)) |
| 11 | 5, 10 | syl5bi 232 |
. . . . . . . . 9
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴) → (𝑥 ≠ ∅ → (𝐻 “ 𝑥) ≠ ∅)) |
| 12 | 11 | expimpd 629 |
. . . . . . . 8
⊢ (𝐻 Fn 𝐴 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (𝐻 “ 𝑥) ≠ ∅)) |
| 13 | 4, 12 | syl 17 |
. . . . . . 7
⊢ (𝐻:𝐴–1-1-onto→𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (𝐻 “ 𝑥) ≠ ∅)) |
| 14 | | f1ofo 6144 |
. . . . . . . 8
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–onto→𝐵) |
| 15 | | imassrn 5477 |
. . . . . . . . 9
⊢ (𝐻 “ 𝑥) ⊆ ran 𝐻 |
| 16 | | forn 6118 |
. . . . . . . . 9
⊢ (𝐻:𝐴–onto→𝐵 → ran 𝐻 = 𝐵) |
| 17 | 15, 16 | syl5sseq 3653 |
. . . . . . . 8
⊢ (𝐻:𝐴–onto→𝐵 → (𝐻 “ 𝑥) ⊆ 𝐵) |
| 18 | 14, 17 | syl 17 |
. . . . . . 7
⊢ (𝐻:𝐴–1-1-onto→𝐵 → (𝐻 “ 𝑥) ⊆ 𝐵) |
| 19 | 13, 18 | jctild 566 |
. . . . . 6
⊢ (𝐻:𝐴–1-1-onto→𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅))) |
| 20 | 3, 19 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅))) |
| 21 | | dffr3 5498 |
. . . . . 6
⊢ (𝑆 Fr 𝐵 ↔ ∀𝑧((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅)) |
| 22 | | isofrlem.2 |
. . . . . . 7
⊢ (𝜑 → (𝐻 “ 𝑥) ∈ V) |
| 23 | | sseq1 3626 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐻 “ 𝑥) → (𝑧 ⊆ 𝐵 ↔ (𝐻 “ 𝑥) ⊆ 𝐵)) |
| 24 | | neeq1 2856 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐻 “ 𝑥) → (𝑧 ≠ ∅ ↔ (𝐻 “ 𝑥) ≠ ∅)) |
| 25 | 23, 24 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑧 = (𝐻 “ 𝑥) → ((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) ↔ ((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅))) |
| 26 | | ineq1 3807 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐻 “ 𝑥) → (𝑧 ∩ (◡𝑆 “ {𝑤})) = ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤}))) |
| 27 | 26 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐻 “ 𝑥) → ((𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅ ↔ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) |
| 28 | 27 | rexeqbi1dv 3147 |
. . . . . . . . 9
⊢ (𝑧 = (𝐻 “ 𝑥) → (∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅ ↔ ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) |
| 29 | 25, 28 | imbi12d 334 |
. . . . . . . 8
⊢ (𝑧 = (𝐻 “ 𝑥) → (((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅) ↔ (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
| 30 | 29 | spcgv 3293 |
. . . . . . 7
⊢ ((𝐻 “ 𝑥) ∈ V → (∀𝑧((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅) → (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
| 31 | 22, 30 | syl 17 |
. . . . . 6
⊢ (𝜑 → (∀𝑧((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅) → (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
| 32 | 21, 31 | syl5bi 232 |
. . . . 5
⊢ (𝜑 → (𝑆 Fr 𝐵 → (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
| 33 | 20, 32 | syl5d 73 |
. . . 4
⊢ (𝜑 → (𝑆 Fr 𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
| 34 | 3 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → 𝐻:𝐴–1-1-onto→𝐵) |
| 35 | | f1ofun 6139 |
. . . . . . . . . . 11
⊢ (𝐻:𝐴–1-1-onto→𝐵 → Fun 𝐻) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → Fun 𝐻) |
| 37 | | simpl 473 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → 𝑤 ∈ (𝐻 “ 𝑥)) |
| 38 | | fvelima 6248 |
. . . . . . . . . 10
⊢ ((Fun
𝐻 ∧ 𝑤 ∈ (𝐻 “ 𝑥)) → ∃𝑦 ∈ 𝑥 (𝐻‘𝑦) = 𝑤) |
| 39 | 36, 37, 38 | syl2an 494 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → ∃𝑦 ∈ 𝑥 (𝐻‘𝑦) = 𝑤) |
| 40 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) |
| 41 | | ssel 3597 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ⊆ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) |
| 42 | 41 | imdistani 726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
| 43 | | isomin 6587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ∅)) |
| 44 | 1, 42, 43 | syl2an 494 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥)) → ((𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ∅)) |
| 45 | | sneq 4187 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐻‘𝑦) = 𝑤 → {(𝐻‘𝑦)} = {𝑤}) |
| 46 | 45 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐻‘𝑦) = 𝑤 → (◡𝑆 “ {(𝐻‘𝑦)}) = (◡𝑆 “ {𝑤})) |
| 47 | 46 | ineq2d 3814 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻‘𝑦) = 𝑤 → ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤}))) |
| 48 | 47 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻‘𝑦) = 𝑤 → (((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ∅ ↔ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) |
| 49 | 44, 48 | sylan9bb 736 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥)) ∧ (𝐻‘𝑦) = 𝑤) → ((𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) |
| 50 | 40, 49 | syl5ibr 236 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥)) ∧ (𝐻‘𝑦) = 𝑤) → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
| 51 | 50 | exp42 639 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ⊆ 𝐴 → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))))) |
| 52 | 51 | imp 445 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)))) |
| 53 | 52 | com3l 89 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → ((𝜑 ∧ 𝑥 ⊆ 𝐴) → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)))) |
| 54 | 53 | com4t 93 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)))) |
| 55 | 54 | imp 445 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
| 56 | 55 | reximdvai 3015 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → (∃𝑦 ∈ 𝑥 (𝐻‘𝑦) = 𝑤 → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
| 57 | 39, 56 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) |
| 58 | 57 | rexlimdvaa 3032 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
| 59 | 58 | ex 450 |
. . . . . 6
⊢ (𝜑 → (𝑥 ⊆ 𝐴 → (∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
| 60 | 59 | adantrd 484 |
. . . . 5
⊢ (𝜑 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
| 61 | 60 | a2d 29 |
. . . 4
⊢ (𝜑 → (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
| 62 | 33, 61 | syld 47 |
. . 3
⊢ (𝜑 → (𝑆 Fr 𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
| 63 | 62 | alrimdv 1857 |
. 2
⊢ (𝜑 → (𝑆 Fr 𝐵 → ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
| 64 | | dffr3 5498 |
. 2
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
| 65 | 63, 64 | syl6ibr 242 |
1
⊢ (𝜑 → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |