MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgmatr01lem Structured version   Visualization version   GIF version

Theorem symgmatr01lem 20459
Description: Lemma for symgmatr01 20460. (Contributed by AV, 3-Jan-2019.)
Hypothesis
Ref Expression
symgmatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
Assertion
Ref Expression
symgmatr01lem ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄𝑘))) = 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑞,𝐿   𝑘,𝐾,𝑞   𝑘,𝑀   𝑘,𝑁   𝑃,𝑘,𝑞   𝑄,𝑘,𝑞
Allowed substitution hints:   𝐴(𝑞)   𝐵(𝑞)   𝑀(𝑞)   𝑁(𝑞)

Proof of Theorem symgmatr01lem
StepHypRef Expression
1 simpll 790 . . 3 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝐾𝑁)
2 eqeq1 2626 . . . . . 6 (𝑘 = 𝐾 → (𝑘 = 𝐾𝐾 = 𝐾))
3 fveq2 6191 . . . . . . . 8 (𝑘 = 𝐾 → (𝑄𝑘) = (𝑄𝐾))
43eqeq1d 2624 . . . . . . 7 (𝑘 = 𝐾 → ((𝑄𝑘) = 𝐿 ↔ (𝑄𝐾) = 𝐿))
54ifbid 4108 . . . . . 6 (𝑘 = 𝐾 → if((𝑄𝑘) = 𝐿, 𝐴, 𝐵) = if((𝑄𝐾) = 𝐿, 𝐴, 𝐵))
6 id 22 . . . . . . 7 (𝑘 = 𝐾𝑘 = 𝐾)
76, 3oveq12d 6668 . . . . . 6 (𝑘 = 𝐾 → (𝑘𝑀(𝑄𝑘)) = (𝐾𝑀(𝑄𝐾)))
82, 5, 7ifbieq12d 4113 . . . . 5 (𝑘 = 𝐾 → if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄𝑘))) = if(𝐾 = 𝐾, if((𝑄𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄𝐾))))
98eqeq1d 2624 . . . 4 (𝑘 = 𝐾 → (if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄𝑘))) = 𝐵 ↔ if(𝐾 = 𝐾, if((𝑄𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄𝐾))) = 𝐵))
109adantl 482 . . 3 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘 = 𝐾) → (if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄𝑘))) = 𝐵 ↔ if(𝐾 = 𝐾, if((𝑄𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄𝐾))) = 𝐵))
11 eqidd 2623 . . . . 5 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝐾 = 𝐾)
1211iftrued 4094 . . . 4 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → if(𝐾 = 𝐾, if((𝑄𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄𝐾))) = if((𝑄𝐾) = 𝐿, 𝐴, 𝐵))
13 eldif 3584 . . . . . . 7 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) ↔ (𝑄𝑃 ∧ ¬ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}))
14 ianor 509 . . . . . . . . . 10 (¬ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ↔ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿))
15 fveq1 6190 . . . . . . . . . . . 12 (𝑞 = 𝑄 → (𝑞𝐾) = (𝑄𝐾))
1615eqeq1d 2624 . . . . . . . . . . 11 (𝑞 = 𝑄 → ((𝑞𝐾) = 𝐿 ↔ (𝑄𝐾) = 𝐿))
1716elrab 3363 . . . . . . . . . 10 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿} ↔ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿))
1814, 17xchnxbir 323 . . . . . . . . 9 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿} ↔ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿))
19 pm2.21 120 . . . . . . . . . 10 𝑄𝑃 → (𝑄𝑃 → ¬ (𝑄𝐾) = 𝐿))
20 ax-1 6 . . . . . . . . . 10 (¬ (𝑄𝐾) = 𝐿 → (𝑄𝑃 → ¬ (𝑄𝐾) = 𝐿))
2119, 20jaoi 394 . . . . . . . . 9 ((¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿) → (𝑄𝑃 → ¬ (𝑄𝐾) = 𝐿))
2218, 21sylbi 207 . . . . . . . 8 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿} → (𝑄𝑃 → ¬ (𝑄𝐾) = 𝐿))
2322impcom 446 . . . . . . 7 ((𝑄𝑃 ∧ ¬ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ¬ (𝑄𝐾) = 𝐿)
2413, 23sylbi 207 . . . . . 6 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ¬ (𝑄𝐾) = 𝐿)
2524adantl 482 . . . . 5 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ¬ (𝑄𝐾) = 𝐿)
2625iffalsed 4097 . . . 4 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → if((𝑄𝐾) = 𝐿, 𝐴, 𝐵) = 𝐵)
2712, 26eqtrd 2656 . . 3 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → if(𝐾 = 𝐾, if((𝑄𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄𝐾))) = 𝐵)
281, 10, 27rspcedvd 3317 . 2 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄𝑘))) = 𝐵)
2928ex 450 1 ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄𝑘))) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  cdif 3571  ifcif 4086  cfv 5888  (class class class)co 6650  Basecbs 15857  SymGrpcsymg 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  symgmatr01  20460
  Copyright terms: Public domain W3C validator