| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgmatr01lem | Structured version Visualization version Unicode version | ||
| Description: Lemma for symgmatr01 20460. (Contributed by AV, 3-Jan-2019.) |
| Ref | Expression |
|---|---|
| symgmatr01.p |
|
| Ref | Expression |
|---|---|
| symgmatr01lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 790 |
. . 3
| |
| 2 | eqeq1 2626 |
. . . . . 6
| |
| 3 | fveq2 6191 |
. . . . . . . 8
| |
| 4 | 3 | eqeq1d 2624 |
. . . . . . 7
|
| 5 | 4 | ifbid 4108 |
. . . . . 6
|
| 6 | id 22 |
. . . . . . 7
| |
| 7 | 6, 3 | oveq12d 6668 |
. . . . . 6
|
| 8 | 2, 5, 7 | ifbieq12d 4113 |
. . . . 5
|
| 9 | 8 | eqeq1d 2624 |
. . . 4
|
| 10 | 9 | adantl 482 |
. . 3
|
| 11 | eqidd 2623 |
. . . . 5
| |
| 12 | 11 | iftrued 4094 |
. . . 4
|
| 13 | eldif 3584 |
. . . . . . 7
| |
| 14 | ianor 509 |
. . . . . . . . . 10
| |
| 15 | fveq1 6190 |
. . . . . . . . . . . 12
| |
| 16 | 15 | eqeq1d 2624 |
. . . . . . . . . . 11
|
| 17 | 16 | elrab 3363 |
. . . . . . . . . 10
|
| 18 | 14, 17 | xchnxbir 323 |
. . . . . . . . 9
|
| 19 | pm2.21 120 |
. . . . . . . . . 10
| |
| 20 | ax-1 6 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | jaoi 394 |
. . . . . . . . 9
|
| 22 | 18, 21 | sylbi 207 |
. . . . . . . 8
|
| 23 | 22 | impcom 446 |
. . . . . . 7
|
| 24 | 13, 23 | sylbi 207 |
. . . . . 6
|
| 25 | 24 | adantl 482 |
. . . . 5
|
| 26 | 25 | iffalsed 4097 |
. . . 4
|
| 27 | 12, 26 | eqtrd 2656 |
. . 3
|
| 28 | 1, 10, 27 | rspcedvd 3317 |
. 2
|
| 29 | 28 | ex 450 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: symgmatr01 20460 |
| Copyright terms: Public domain | W3C validator |