| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoicbv | Structured version Visualization version GIF version | ||
| Description: Define inverse function for trace-perserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 12-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendoi.i | ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) |
| Ref | Expression |
|---|---|
| tendoicbv | ⊢ 𝐼 = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendoi.i | . 2 ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) | |
| 2 | fveq1 6190 | . . . . . 6 ⊢ (𝑠 = 𝑢 → (𝑠‘𝑓) = (𝑢‘𝑓)) | |
| 3 | 2 | cnveqd 5298 | . . . . 5 ⊢ (𝑠 = 𝑢 → ◡(𝑠‘𝑓) = ◡(𝑢‘𝑓)) |
| 4 | 3 | mpteq2dv 4745 | . . . 4 ⊢ (𝑠 = 𝑢 → (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓)) = (𝑓 ∈ 𝑇 ↦ ◡(𝑢‘𝑓))) |
| 5 | fveq2 6191 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑢‘𝑓) = (𝑢‘𝑔)) | |
| 6 | 5 | cnveqd 5298 | . . . . 5 ⊢ (𝑓 = 𝑔 → ◡(𝑢‘𝑓) = ◡(𝑢‘𝑔)) |
| 7 | 6 | cbvmptv 4750 | . . . 4 ⊢ (𝑓 ∈ 𝑇 ↦ ◡(𝑢‘𝑓)) = (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔)) |
| 8 | 4, 7 | syl6eq 2672 | . . 3 ⊢ (𝑠 = 𝑢 → (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓)) = (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
| 9 | 8 | cbvmptv 4750 | . 2 ⊢ (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
| 10 | 1, 9 | eqtri 2644 | 1 ⊢ 𝐼 = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1483 ↦ cmpt 4729 ◡ccnv 5113 ‘cfv 5888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-cnv 5122 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: tendoi 36082 |
| Copyright terms: Public domain | W3C validator |