MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topbas Structured version   Visualization version   GIF version

Theorem topbas 20776
Description: A topology is its own basis. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
topbas (𝐽 ∈ Top → 𝐽 ∈ TopBases)

Proof of Theorem topbas
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inopn 20704 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑦𝐽) → (𝑥𝑦) ∈ 𝐽)
213expb 1266 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑦) ∈ 𝐽)
3 simpr 477 . . . . . . 7 (((𝐽 ∈ Top ∧ (𝑥𝐽𝑦𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧 ∈ (𝑥𝑦))
4 ssid 3624 . . . . . . 7 (𝑥𝑦) ⊆ (𝑥𝑦)
53, 4jctir 561 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑥𝐽𝑦𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝑧 ∈ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦)))
6 eleq2 2690 . . . . . . . 8 (𝑤 = (𝑥𝑦) → (𝑧𝑤𝑧 ∈ (𝑥𝑦)))
7 sseq1 3626 . . . . . . . 8 (𝑤 = (𝑥𝑦) → (𝑤 ⊆ (𝑥𝑦) ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
86, 7anbi12d 747 . . . . . . 7 (𝑤 = (𝑥𝑦) → ((𝑧𝑤𝑤 ⊆ (𝑥𝑦)) ↔ (𝑧 ∈ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦))))
98rspcev 3309 . . . . . 6 (((𝑥𝑦) ∈ 𝐽 ∧ (𝑧 ∈ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦))) → ∃𝑤𝐽 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
102, 5, 9syl2an2r 876 . . . . 5 (((𝐽 ∈ Top ∧ (𝑥𝐽𝑦𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → ∃𝑤𝐽 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1110exp31 630 . . . 4 (𝐽 ∈ Top → ((𝑥𝐽𝑦𝐽) → (𝑧 ∈ (𝑥𝑦) → ∃𝑤𝐽 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))))
1211ralrimdv 2968 . . 3 (𝐽 ∈ Top → ((𝑥𝐽𝑦𝐽) → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐽 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
1312ralrimivv 2970 . 2 (𝐽 ∈ Top → ∀𝑥𝐽𝑦𝐽𝑧 ∈ (𝑥𝑦)∃𝑤𝐽 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
14 isbasis2g 20752 . 2 (𝐽 ∈ Top → (𝐽 ∈ TopBases ↔ ∀𝑥𝐽𝑦𝐽𝑧 ∈ (𝑥𝑦)∃𝑤𝐽 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
1513, 14mpbird 247 1 (𝐽 ∈ Top → 𝐽 ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cin 3573  wss 3574  Topctop 20698  TopBasesctb 20749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-top 20699  df-bases 20750
This theorem is referenced by:  resttop  20964  dis1stc  21302  txtop  21372  onpsstopbas  32429
  Copyright terms: Public domain W3C validator