| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topbas | Structured version Visualization version Unicode version | ||
| Description: A topology is its own basis. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| topbas |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inopn 20704 |
. . . . . . 7
| |
| 2 | 1 | 3expb 1266 |
. . . . . 6
|
| 3 | simpr 477 |
. . . . . . 7
| |
| 4 | ssid 3624 |
. . . . . . 7
| |
| 5 | 3, 4 | jctir 561 |
. . . . . 6
|
| 6 | eleq2 2690 |
. . . . . . . 8
| |
| 7 | sseq1 3626 |
. . . . . . . 8
| |
| 8 | 6, 7 | anbi12d 747 |
. . . . . . 7
|
| 9 | 8 | rspcev 3309 |
. . . . . 6
|
| 10 | 2, 5, 9 | syl2an2r 876 |
. . . . 5
|
| 11 | 10 | exp31 630 |
. . . 4
|
| 12 | 11 | ralrimdv 2968 |
. . 3
|
| 13 | 12 | ralrimivv 2970 |
. 2
|
| 14 | isbasis2g 20752 |
. 2
| |
| 15 | 13, 14 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 df-uni 4437 df-top 20699 df-bases 20750 |
| This theorem is referenced by: resttop 20964 dis1stc 21302 txtop 21372 onpsstopbas 32429 |
| Copyright terms: Public domain | W3C validator |