MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsk1 Structured version   Visualization version   GIF version

Theorem tsk1 9586
Description: One is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.)
Assertion
Ref Expression
tsk1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1𝑜𝑇)

Proof of Theorem tsk1
StepHypRef Expression
1 df1o2 7572 . 2 1𝑜 = {∅}
2 tsk0 9585 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇)
3 tsksn 9582 . . 3 ((𝑇 ∈ Tarski ∧ ∅ ∈ 𝑇) → {∅} ∈ 𝑇)
42, 3syldan 487 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → {∅} ∈ 𝑇)
51, 4syl5eqel 2705 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1𝑜𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  wne 2794  c0 3915  {csn 4177  1𝑜c1o 7553  Tarskictsk 9570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-suc 5729  df-1o 7560  df-tsk 9571
This theorem is referenced by:  tsk2  9587
  Copyright terms: Public domain W3C validator