![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-1o | Structured version Visualization version GIF version |
Description: Define the ordinal number 1. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
df-1o | ⊢ 1𝑜 = suc ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c1o 7553 | . 2 class 1𝑜 | |
2 | c0 3915 | . . 3 class ∅ | |
3 | 2 | csuc 5725 | . 2 class suc ∅ |
4 | 1, 3 | wceq 1483 | 1 wff 1𝑜 = suc ∅ |
Colors of variables: wff setvar class |
This definition is referenced by: 1on 7567 df1o2 7572 ordgt0ge1 7577 oa1suc 7611 om1 7622 oe1 7624 oelim2 7675 nnecl 7693 1onn 7719 omabs 7727 nnm1 7728 0sdom1dom 8158 ackbij1lem14 9055 aleph1 9393 cfpwsdom 9406 nlt1pi 9728 indpi 9729 hash1 13192 aleph1re 14974 bnj168 30798 sltval2 31809 sltsolem1 31826 nosepnelem 31830 nolt02o 31845 rankeq1o 32278 bj-1ex 32938 finxp1o 33229 finxpreclem4 33231 finxp00 33239 clsk1indlem1 38343 |
Copyright terms: Public domain | W3C validator |