| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tsna3 | Structured version Visualization version GIF version | ||
| Description: A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
| Ref | Expression |
|---|---|
| tsna3 | ⊢ (𝜃 → (𝜓 ∨ (𝜑 ⊼ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsan3 33950 | . 2 ⊢ (𝜃 → (𝜓 ∨ ¬ (𝜑 ∧ 𝜓))) | |
| 2 | df-nan 1448 | . . 3 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 3 | 2 | orbi2i 541 | . 2 ⊢ ((𝜓 ∨ (𝜑 ⊼ 𝜓)) ↔ (𝜓 ∨ ¬ (𝜑 ∧ 𝜓))) |
| 4 | 1, 3 | sylibr 224 | 1 ⊢ (𝜃 → (𝜓 ∨ (𝜑 ⊼ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∧ wa 384 ⊼ wnan 1447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-nan 1448 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |