![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi2i | Structured version Visualization version GIF version |
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 206 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | orim2i 540 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
4 | 1 | biimpri 218 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | orim2i 540 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
6 | 3, 5 | impbii 199 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 385 |
This theorem is referenced by: orbi1i 542 orbi12i 543 orass 546 or4 550 or42 551 orordir 553 dn1 1008 dfifp6 1018 3orcomb 1048 excxor 1469 nf3 1712 19.44v 1912 19.44 2106 r19.30 3082 sspsstri 3709 unass 3770 undi 3874 undif3 3888 undif3OLD 3889 undif4 4035 ssunpr 4365 sspr 4366 sstp 4367 pr1eqbg 4390 iinun2 4586 iinuni 4609 qfto 5517 somin1 5529 ordtri2 5758 on0eqel 5845 frxp 7287 wfrlem14 7428 wfrlem15 7429 supgtoreq 8376 wemapsolem 8455 fin1a2lem12 9233 psslinpr 9853 suplem2pr 9875 fimaxre 10968 elnn0 11294 elxnn0 11365 elnn1uz2 11765 elxr 11950 xrinfmss 12140 elfzp1 12391 hashf1lem2 13240 dvdslelem 15031 pythagtrip 15539 tosso 17036 maducoeval2 20446 madugsum 20449 ist0-3 21149 limcdif 23640 ellimc2 23641 limcmpt 23647 limcres 23650 plydivex 24052 taylfval 24113 legtrid 25486 legso 25494 lmicom 25680 numedglnl 26039 nb3grprlem2 26283 numclwwlk3lem 27241 atomli 29241 atoml2i 29242 or3di 29307 disjnf 29384 disjex 29405 disjexc 29406 orngsqr 29804 ind1a 30081 esumcvg 30148 voliune 30292 volfiniune 30293 bnj964 31013 dfso2 31644 soseq 31751 lineunray 32254 bj-dfbi4 32558 poimirlem18 33427 poimirlem23 33432 poimirlem27 33436 poimirlem31 33440 itg2addnclem2 33462 tsxo1 33944 tsxo2 33945 tsxo3 33946 tsxo4 33947 tsna1 33951 tsna2 33952 tsna3 33953 ts3an1 33957 ts3an2 33958 ts3an3 33959 ts3or1 33960 ts3or2 33961 ts3or3 33962 ifpim123g 37845 ifpor123g 37853 rp-fakeoranass 37859 frege133d 38057 or3or 38319 undif3VD 39118 wallispilem3 40284 iccpartgt 41363 nnsum4primeseven 41688 nnsum4primesevenALTV 41689 lindslinindsimp2 42252 |
Copyright terms: Public domain | W3C validator |