MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifabs Structured version   Visualization version   GIF version

Theorem undifabs 4045
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.)
Assertion
Ref Expression
undifabs (𝐴 ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem undifabs
StepHypRef Expression
1 undif3 3888 . 2 (𝐴 ∪ (𝐴𝐵)) = ((𝐴𝐴) ∖ (𝐵𝐴))
2 unidm 3756 . . 3 (𝐴𝐴) = 𝐴
32difeq1i 3724 . 2 ((𝐴𝐴) ∖ (𝐵𝐴)) = (𝐴 ∖ (𝐵𝐴))
4 difdif 3736 . 2 (𝐴 ∖ (𝐵𝐴)) = 𝐴
51, 3, 43eqtri 2648 1 (𝐴 ∪ (𝐴𝐵)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  cdif 3571  cun 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579
This theorem is referenced by:  dfif5  4102  indifundif  29356
  Copyright terms: Public domain W3C validator