MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difdif Structured version   Visualization version   GIF version

Theorem difdif 3736
Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
difdif (𝐴 ∖ (𝐵𝐴)) = 𝐴

Proof of Theorem difdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm4.45im 585 . . 3 (𝑥𝐴 ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐴)))
2 iman 440 . . . . 5 ((𝑥𝐵𝑥𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
3 eldif 3584 . . . . 5 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
42, 3xchbinxr 325 . . . 4 ((𝑥𝐵𝑥𝐴) ↔ ¬ 𝑥 ∈ (𝐵𝐴))
54anbi2i 730 . . 3 ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐴)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)))
61, 5bitr2i 265 . 2 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ 𝑥𝐴)
76difeqri 3730 1 (𝐴 ∖ (𝐵𝐴)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  cdif 3571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577
This theorem is referenced by:  dif0  3950  undifabs  4045
  Copyright terms: Public domain W3C validator