| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneqri | Structured version Visualization version GIF version | ||
| Description: Inference from membership to union. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| uneqri.1 | ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| uneqri | ⊢ (𝐴 ∪ 𝐵) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 3753 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 2 | uneqri.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) | |
| 3 | 1, 2 | bitri 264 | . 2 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐶) |
| 4 | 3 | eqriv 2619 | 1 ⊢ (𝐴 ∪ 𝐵) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∨ wo 383 = wceq 1483 ∈ wcel 1990 ∪ cun 3572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 |
| This theorem is referenced by: unidm 3756 uncom 3757 unass 3770 dfun2 3859 undi 3874 unab 3894 un0 3967 inundif 4046 |
| Copyright terms: Public domain | W3C validator |