MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneqri Structured version   Visualization version   GIF version

Theorem uneqri 3755
Description: Inference from membership to union. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
uneqri.1 ((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐶)
Assertion
Ref Expression
uneqri (𝐴𝐵) = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem uneqri
StepHypRef Expression
1 elun 3753 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 uneqri.1 . . 3 ((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐶)
31, 2bitri 264 . 2 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐶)
43eqriv 2619 1 (𝐴𝐵) = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 383   = wceq 1483  wcel 1990  cun 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579
This theorem is referenced by:  unidm  3756  uncom  3757  unass  3770  dfun2  3859  undi  3874  unab  3894  un0  3967  inundif  4046
  Copyright terms: Public domain W3C validator