![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqriv | Structured version Visualization version GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
eqriv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2616 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1726 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1483 ∈ wcel 1990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 |
This theorem is referenced by: eqid 2622 cbvab 2746 vjust 3201 rabtru 3361 nfccdeq 3433 difeqri 3730 uneqri 3755 incom 3805 ineqri 3806 symdifass 3853 indifdir 3883 undif3 3888 undif3OLD 3889 csbcom 3994 csbab 4008 pwpr 4430 pwtp 4431 pwv 4433 uniun 4456 int0 4490 intun 4509 intpr 4510 iuncom 4527 iuncom4 4528 iunin2 4584 iinun2 4586 iundif2 4587 iunun 4604 iunxun 4605 iunxiun 4608 iinpw 4617 inuni 4826 unipw 4918 xpiundi 5173 xpiundir 5174 iunxpf 5270 cnvuni 5309 dmiun 5333 dmuni 5334 epini 5495 rniun 5543 xpdifid 5562 cnvresima 5623 imaco 5640 rnco 5641 dfmpt3 6014 imaiun 6503 snnexOLD 6967 unon 7031 opabex3d 7145 opabex3 7146 fparlem1 7277 fparlem2 7278 oarec 7642 ecid 7812 qsid 7813 mapval2 7887 ixpin 7933 onfin2 8152 unfilem1 8224 unifpw 8269 dfom5 8547 alephsuc2 8903 ackbij2 9065 isf33lem 9188 dffin7-2 9220 fin1a2lem6 9227 acncc 9262 fin41 9266 iunfo 9361 grutsk 9644 grothac 9652 grothtsk 9657 dfz2 11395 qexALT 11803 om2uzrani 12751 hashkf 13119 divalglem4 15119 1nprm 15392 nsgacs 17630 oppgsubm 17792 oppgsubg 17793 oppgcntz 17794 pmtrprfvalrn 17908 opprsubg 18636 opprunit 18661 opprirred 18702 opprsubrg 18801 00lss 18942 00ply1bas 19610 dfprm2 19842 unocv 20024 iunocv 20025 toprntopon 20729 unisngl 21330 zcld 22616 iundisj 23316 plyun0 23953 aannenlem2 24084 eqid1 27323 choc0 28185 chocnul 28187 spanunsni 28438 lncnbd 28897 adjbd1o 28944 rnbra 28966 pjimai 29035 iunin1f 29374 iundisjf 29402 dfrp2 29532 xrdifh 29542 iundisjfi 29555 cmpcref 29917 eulerpartgbij 30434 eulerpartlemr 30436 oddprm2 30733 dfdm5 31676 dfrn5 31677 imaindm 31682 dffix2 32012 fixcnv 32015 dfom5b 32019 fnimage 32036 brimg 32044 bj-vjust 32786 bj-csbsnlem 32898 bj-projun 32982 bj-vjust2 33015 finxp1o 33229 iundif1 33383 poimirlem26 33435 csbcom2fi 33934 csbgfi 33935 prtlem16 34154 aaitgo 37732 imaiun1 37943 nzss 38516 dfodd2 41549 dfeven5 41578 dfodd7 41579 |
Copyright terms: Public domain | W3C validator |