| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unexb | Structured version Visualization version GIF version | ||
| Description: Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.) |
| Ref | Expression |
|---|---|
| unexb | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 3760 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
| 2 | 1 | eleq1d 2686 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝑦) ∈ V)) |
| 3 | uneq2 3761 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
| 4 | 3 | eleq1d 2686 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝐵) ∈ V)) |
| 5 | vex 3203 | . . . 4 ⊢ 𝑥 ∈ V | |
| 6 | vex 3203 | . . . 4 ⊢ 𝑦 ∈ V | |
| 7 | 5, 6 | unex 6956 | . . 3 ⊢ (𝑥 ∪ 𝑦) ∈ V |
| 8 | 2, 4, 7 | vtocl2g 3270 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) |
| 9 | ssun1 3776 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 10 | ssexg 4804 | . . . 4 ⊢ ((𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ∈ V) → 𝐴 ∈ V) | |
| 11 | 9, 10 | mpan 706 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝐴 ∈ V) |
| 12 | ssun2 3777 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 13 | ssexg 4804 | . . . 4 ⊢ ((𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ∈ V) → 𝐵 ∈ V) | |
| 14 | 12, 13 | mpan 706 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝐵 ∈ V) |
| 15 | 11, 14 | jca 554 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 16 | 8, 15 | impbii 199 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 ⊆ wss 3574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-uni 4437 |
| This theorem is referenced by: unexg 6959 sucexb 7009 fodomr 8111 fsuppun 8294 fsuppunbi 8296 cdaval 8992 bj-tagex 32975 |
| Copyright terms: Public domain | W3C validator |