MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniexr Structured version   Visualization version   GIF version

Theorem uniexr 6972
Description: Converse of the Axiom of Union. Note that it does not require ax-un 6949. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
uniexr ( 𝐴𝑉𝐴 ∈ V)

Proof of Theorem uniexr
StepHypRef Expression
1 pwuni 4474 . 2 𝐴 ⊆ 𝒫 𝐴
2 pwexg 4850 . 2 ( 𝐴𝑉 → 𝒫 𝐴 ∈ V)
3 ssexg 4804 . 2 ((𝐴 ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → 𝐴 ∈ V)
41, 2, 3sylancr 695 1 ( 𝐴𝑉𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1990  Vcvv 3200  wss 3574  𝒫 cpw 4158   cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437
This theorem is referenced by:  uniexb  6973  ssonprc  6992  ac5num  8859  bj-restv  33048  bj-mooreset  33056
  Copyright terms: Public domain W3C validator