Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mooreset Structured version   Visualization version   GIF version

Theorem bj-mooreset 33056
Description: A Moore collection is a set. That is, if we define a "Moore predicate" by (Moore𝐴 ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴), then any class satisfying that predicate is actually a set. Therefore, the definition df-bj-moore 33058 is sufficient. Note that the closed sets of a topology form a Moore collection, so this remark also applies to topologies and many other families of sets (namely, as soon as the whole set is required to be a closed set, as can be seen from the proof, which relies crucially on uniexr 6972).

Note: if, in the above predicate, we substitute 𝒫 𝑋 for 𝐴, then the last ∈ 𝒫 𝑋 could be weakened to ⊆ 𝒫 𝑋, and then the predicate would be obviously satisfied since 𝒫 𝑋 = 𝑋, making 𝒫 𝑋 a Moore collection in this weaker sense, even if 𝑋 is a proper class, but the addition of this single case does not add anything interesting. (Contributed by BJ, 8-Dec-2021.)

Assertion
Ref Expression
bj-mooreset (∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴𝐴 ∈ V)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-mooreset
StepHypRef Expression
1 0elpw 4834 . . 3 ∅ ∈ 𝒫 𝐴
2 rint0 4517 . . . . 5 (𝑥 = ∅ → ( 𝐴 𝑥) = 𝐴)
32eleq1d 2686 . . . 4 (𝑥 = ∅ → (( 𝐴 𝑥) ∈ 𝐴 𝐴𝐴))
43rspcv 3305 . . 3 (∅ ∈ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴 𝐴𝐴))
51, 4ax-mp 5 . 2 (∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴 𝐴𝐴)
6 uniexr 6972 . 2 ( 𝐴𝐴𝐴 ∈ V)
75, 6syl 17 1 (∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cin 3573  c0 3915  𝒫 cpw 4158   cuni 4436   cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-uni 4437  df-int 4476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator