![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unisn2 | Structured version Visualization version GIF version |
Description: A version of unisn 4451 without the 𝐴 ∈ V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006.) |
Ref | Expression |
---|---|
unisn2 | ⊢ ∪ {𝐴} ∈ {∅, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisng 4452 | . . 3 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
2 | prid2g 4296 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ {∅, 𝐴}) | |
3 | 1, 2 | eqeltrd 2701 | . 2 ⊢ (𝐴 ∈ V → ∪ {𝐴} ∈ {∅, 𝐴}) |
4 | snprc 4253 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
5 | 4 | biimpi 206 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
6 | 5 | unieqd 4446 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∪ {𝐴} = ∪ ∅) |
7 | uni0 4465 | . . . 4 ⊢ ∪ ∅ = ∅ | |
8 | 0ex 4790 | . . . . 5 ⊢ ∅ ∈ V | |
9 | 8 | prid1 4297 | . . . 4 ⊢ ∅ ∈ {∅, 𝐴} |
10 | 7, 9 | eqeltri 2697 | . . 3 ⊢ ∪ ∅ ∈ {∅, 𝐴} |
11 | 6, 10 | syl6eqel 2709 | . 2 ⊢ (¬ 𝐴 ∈ V → ∪ {𝐴} ∈ {∅, 𝐴}) |
12 | 3, 11 | pm2.61i 176 | 1 ⊢ ∪ {𝐴} ∈ {∅, 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 {csn 4177 {cpr 4179 ∪ cuni 4436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-uni 4437 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |