MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisn2 Structured version   Visualization version   Unicode version

Theorem unisn2 4794
Description: A version of unisn 4451 without the  A  e.  _V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006.)
Assertion
Ref Expression
unisn2  |-  U. { A }  e.  { (/) ,  A }

Proof of Theorem unisn2
StepHypRef Expression
1 unisng 4452 . . 3  |-  ( A  e.  _V  ->  U. { A }  =  A
)
2 prid2g 4296 . . 3  |-  ( A  e.  _V  ->  A  e.  { (/) ,  A }
)
31, 2eqeltrd 2701 . 2  |-  ( A  e.  _V  ->  U. { A }  e.  { (/) ,  A } )
4 snprc 4253 . . . . 5  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
54biimpi 206 . . . 4  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
65unieqd 4446 . . 3  |-  ( -.  A  e.  _V  ->  U. { A }  =  U. (/) )
7 uni0 4465 . . . 4  |-  U. (/)  =  (/)
8 0ex 4790 . . . . 5  |-  (/)  e.  _V
98prid1 4297 . . . 4  |-  (/)  e.  { (/)
,  A }
107, 9eqeltri 2697 . . 3  |-  U. (/)  e.  { (/)
,  A }
116, 10syl6eqel 2709 . 2  |-  ( -.  A  e.  _V  ->  U. { A }  e.  {
(/) ,  A }
)
123, 11pm2.61i 176 1  |-  U. { A }  e.  { (/) ,  A }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   {csn 4177   {cpr 4179   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator