MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisuc Structured version   Visualization version   GIF version

Theorem unisuc 5801
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisuc.1 𝐴 ∈ V
Assertion
Ref Expression
unisuc (Tr 𝐴 suc 𝐴 = 𝐴)

Proof of Theorem unisuc
StepHypRef Expression
1 ssequn1 3783 . 2 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
2 df-tr 4753 . 2 (Tr 𝐴 𝐴𝐴)
3 df-suc 5729 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
43unieqi 4445 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
5 uniun 4456 . . . 4 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
6 unisuc.1 . . . . . 6 𝐴 ∈ V
76unisn 4451 . . . . 5 {𝐴} = 𝐴
87uneq2i 3764 . . . 4 ( 𝐴 {𝐴}) = ( 𝐴𝐴)
94, 5, 83eqtri 2648 . . 3 suc 𝐴 = ( 𝐴𝐴)
109eqeq1i 2627 . 2 ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴)
111, 2, 103bitr4i 292 1 (Tr 𝐴 suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  wss 3574  {csn 4177   cuni 4436  Tr wtr 4752  suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-sn 4178  df-pr 4180  df-uni 4437  df-tr 4753  df-suc 5729
This theorem is referenced by:  onunisuci  5841  ordunisuc  7032
  Copyright terms: Public domain W3C validator