| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisuc | Structured version Visualization version Unicode version | ||
| Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisuc.1 |
|
| Ref | Expression |
|---|---|
| unisuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 3783 |
. 2
| |
| 2 | df-tr 4753 |
. 2
| |
| 3 | df-suc 5729 |
. . . . 5
| |
| 4 | 3 | unieqi 4445 |
. . . 4
|
| 5 | uniun 4456 |
. . . 4
| |
| 6 | unisuc.1 |
. . . . . 6
| |
| 7 | 6 | unisn 4451 |
. . . . 5
|
| 8 | 7 | uneq2i 3764 |
. . . 4
|
| 9 | 4, 5, 8 | 3eqtri 2648 |
. . 3
|
| 10 | 9 | eqeq1i 2627 |
. 2
|
| 11 | 1, 2, 10 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-pr 4180 df-uni 4437 df-tr 4753 df-suc 5729 |
| This theorem is referenced by: onunisuci 5841 ordunisuc 7032 |
| Copyright terms: Public domain | W3C validator |