![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgr1wlkdlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for upgr1wlkd 27007. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
upgr1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
upgr1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
upgr1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) |
upgr1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) |
upgr1wlkd.j | ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) |
Ref | Expression |
---|---|
upgr1wlkdlem2 | ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgr1wlkd.j | . 2 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) | |
2 | ssid 3624 | . . 3 ⊢ {𝑋, 𝑌} ⊆ {𝑋, 𝑌} | |
3 | sseq2 3627 | . . . 4 ⊢ (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → ({𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽) ↔ {𝑋, 𝑌} ⊆ {𝑋, 𝑌})) | |
4 | 3 | adantl 482 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ≠ 𝑌) ∧ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) → ({𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽) ↔ {𝑋, 𝑌} ⊆ {𝑋, 𝑌})) |
5 | 2, 4 | mpbiri 248 | . 2 ⊢ (((𝜑 ∧ 𝑋 ≠ 𝑌) ∧ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) |
6 | 1, 5 | mpidan 704 | 1 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ⊆ wss 3574 {cpr 4179 ‘cfv 5888 〈“cs1 13294 〈“cs2 13586 Vtxcvtx 25874 iEdgciedg 25875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-in 3581 df-ss 3588 |
This theorem is referenced by: upgr1wlkd 27007 upgr1trld 27008 upgr1pthd 27009 upgr1pthond 27010 |
Copyright terms: Public domain | W3C validator |