MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr1wlkdlem2 Structured version   Visualization version   Unicode version

Theorem upgr1wlkdlem2 27006
Description: Lemma 2 for upgr1wlkd 27007. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
upgr1wlkd.p  |-  P  = 
<" X Y ">
upgr1wlkd.f  |-  F  = 
<" J ">
upgr1wlkd.x  |-  ( ph  ->  X  e.  (Vtx `  G ) )
upgr1wlkd.y  |-  ( ph  ->  Y  e.  (Vtx `  G ) )
upgr1wlkd.j  |-  ( ph  ->  ( (iEdg `  G
) `  J )  =  { X ,  Y } )
Assertion
Ref Expression
upgr1wlkdlem2  |-  ( (
ph  /\  X  =/=  Y )  ->  { X ,  Y }  C_  (
(iEdg `  G ) `  J ) )

Proof of Theorem upgr1wlkdlem2
StepHypRef Expression
1 upgr1wlkd.j . 2  |-  ( ph  ->  ( (iEdg `  G
) `  J )  =  { X ,  Y } )
2 ssid 3624 . . 3  |-  { X ,  Y }  C_  { X ,  Y }
3 sseq2 3627 . . . 4  |-  ( ( (iEdg `  G ) `  J )  =  { X ,  Y }  ->  ( { X ,  Y }  C_  ( (iEdg `  G ) `  J
)  <->  { X ,  Y }  C_  { X ,  Y } ) )
43adantl 482 . . 3  |-  ( ( ( ph  /\  X  =/=  Y )  /\  (
(iEdg `  G ) `  J )  =  { X ,  Y }
)  ->  ( { X ,  Y }  C_  ( (iEdg `  G
) `  J )  <->  { X ,  Y }  C_ 
{ X ,  Y } ) )
52, 4mpbiri 248 . 2  |-  ( ( ( ph  /\  X  =/=  Y )  /\  (
(iEdg `  G ) `  J )  =  { X ,  Y }
)  ->  { X ,  Y }  C_  (
(iEdg `  G ) `  J ) )
61, 5mpidan 704 1  |-  ( (
ph  /\  X  =/=  Y )  ->  { X ,  Y }  C_  (
(iEdg `  G ) `  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   {cpr 4179   ` cfv 5888   <"cs1 13294   <"cs2 13586  Vtxcvtx 25874  iEdgciedg 25875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-in 3581  df-ss 3588
This theorem is referenced by:  upgr1wlkd  27007  upgr1trld  27008  upgr1pthd  27009  upgr1pthond  27010
  Copyright terms: Public domain W3C validator